## AP <br> Microeconomics

## Total Costs

- TC $=$ TFC + TVC
- TFC = Fixed Costs
- Constant costs paid regardless of production
- TVC = Variable Costs
- Costs that vary as production is changed



## Profit $=$ TR - TC

- Accounting:
- Calculates actual costs a business incurs
- Explicit!!
- Ex) inputs, salaries, rent, both fixed and variable
- Economic:
- Calculates all accounting costs plus the what if, or opportunity, costs
- Implicit!!!!


## Short Run vs. Long Run

- Short Run
- At least one fixed factor of
production, usually capital
- No Expansion
- No entry/exit industry
- Long Run
- All factors are variable
- Expansion possible
- Yes can enter or leave industry


## Production Considerations

- Total Product: the relationship btwn inputs and outputs
- Marginal Product: the extra product gained by the change in inputs; $M P=\Delta T P$
- Average Product: AP = TP/q


## The Production Function

| Input | Total <br> Product | Marginal <br> Product | Average <br> Product |  |
| :---: | :---: | :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{1 0}$ | +10 | $\mathbf{1 0}$ |  |
| $\mathbf{2}$ | $\mathbf{2 4}$ | +14 | $\mathbf{1 2}$ |  |
| 3 | 39 | +15 | $\mathbf{1 3}$ |  |
| 4 | $\mathbf{5 2}$ | +12 | $\mathbf{1 3}$ |  |
| $\mathbf{5}$ | $\mathbf{6 0}$ | +8 | $\mathbf{1 2}$ |  |
| $\mathbf{6}$ | $\mathbf{6 6}$ | +6 | $\mathbf{1 1}$ |  |
| 7 | $\mathbf{6 3}$ | -3 | $\mathbf{9}$ |  |
| $\mathbf{8}$ | $\mathbf{5 6}$ | -7 | $\mathbf{7}$ |  |

## Key Graph Parts to Remember:

- Stages follow MP
- AP intersects MP at its high point
- MP increases, decrease \& then goes negative


8. Law of Diminishing Returns Due to limited capacity, output will slow down and then decrease beyond a certain point

## Producer's Costs

- TFC: Total Fixed Costs
- AFC: Average Fixed Costs; TFC/q
- AVC: Average Variable Costs; TVC/q
- Marginal Costs $\Delta T C$


Quantity

## Perfect Competition

- Characteristics: many firms, homogenous products, no barriers to entry, $P=M C=M R$
- Marginal Revenue: extra revenue gained with each additional unit of output; MR = $\Delta T R$
- $P=d=M R$ : Price Takers, each firm takes market price (or market demand) so $P$ and MR are constant (perfectly elastic \& horizontal)


## Putting it all together

Market (Industry)
Firm


## More Questions

14. How can you tell if we are talking about long-run or short-run?
Look for multiple short run graphs, look for LRAC, profit leads to expansion
15. Profits in long run? Explain. Will lead to Long-Run Equilibrium where firms will no longer have economic profits (characteristics of market make long run profits impossible)

## Expanding Production

- Economies of Scale
- LR, expand and more efficient (decrease costs)
- Diseconomies of Scale
- LR, expand and less efficient (increase costs)
- Constant Return to Scale
- LR, expand and costs are same per unit


## Graphing Expansion

Firm


Output

- Derived Demand: the demand for labor is directly dependent on the demand for the output that labor creates
- Law of Diminishing Returns \& Hiring Labor: there is a limit to how many workers a firm should hire (SR), hire as long as they are efficient


## Income vs. Substitution

- Substitution Effect

Choose to subs work for leisure to get more money

## Normal Supply Curve



- Income Effect

Choose current income with less work, want more leisure time

Backward Bending


- Marginal Product of Labor: (MPL)
- The additional output produced as one more unit of labor is added
- Marginal Revenue Product of Labor: (MRPL)
- The addition to the firm's revenue as the result of the marginal product per labor unit
- Represents the firm's demand curve for labor


# Marginal Resource Cost = Wage of Labor = Price of Labor 

- $M R C=W_{L}=P_{L}$
- All refer to the cost of the input labor and are interchangeable.
- In a perfectly competitive labor market, the PL comes from market and is a horizontal line for the firm
- It is the supply curve of labor faced by the firm


# Example: $P_{L}=\$ 60$ and $P_{X}=\$ 10$ 

| ${ }_{\substack{\text { Labor } \\ \text { (L) }}}^{\text {a }}$ | (Total Output | $\underset{\left(\mathbf{M P}_{\mathrm{L}}\right)}{\operatorname{Marginal} \text { Product }}$ | Marginal Revenue Product $^{\left(\mathrm{MRP}_{\mathrm{I}}\right)}$ |
| :---: | :---: | :---: | :---: |
| 1 | 5 | +5 | \$50 |
| 2 | 20 | +15 | \$150 |
| 3 | 30 | +10 | \$100 |
| 4 | 35 | +5 | \$50 |
| 5 | 35 | +0 | \$0 |

$M P_{\mathrm{L}}=\Delta$ output $\quad M R P_{\mathrm{L}}=M P_{\mathrm{L}} \times M P_{\mathrm{L}}$

# How many workers should be hired? 

- $P_{\mathrm{L}}=\$ 60$
- The firm will hire 3 workers; any more and the additional cost will not cover the additional revenue earned; or MRP ${ }_{L} \geq$ MRC.


## Graph:

## Labor Market

Firm


## Parts to Remember:

\#1: MRC is the labor supply curve available to the firm
\#2: MRP is the labor demand curve of the firm
\#3: find where they intersect and that is the quantity of labor hired!!

$$
(M C=M R)
$$

